Bicyclo[3.3.1]nonanes as synthetic intermediates. Part 21. ${ }^{1}$
 E nantiodivergent synthesis of the cis,cis 2,6-disubstituted piperidin-3-ol chiral building block for alkaloid synthesis

Takefumi M omose,* N aoki Toyooka and M akoto J in
Faculty of Pharmaceutical Sciences, Toyama M edical and P harmaceutical U niversity, Sugitani 2630, Toyama 930-01, J apan

Abstract

E nantiodivergent synthesis of the enantio-pure cis,cis 3-protected 2,6-disubstituted piperidin-3-ol 1 has been achieved via a biochemical method, and the absolute stereochemistry of (+)-1 has been established by its conversion into the known piperidine (-)-17. The utility of 1 as a chiral building block for alkaloid synthesis is demonstrated by the total synthesis of (-)-cassine and (+)-spectaline.

Introduction

The construction of versatile chiral building blocks provides us with powerful tools for the efficient syntheses of biologically active natural products. A large number of methods leading to the syntheses of the piperidine, ${ }^{2,3}$ decahydroquinoline, ${ }^{3}$ indolizidine, ${ }^{3,4 a, b}$ and quinolizidine ${ }^{3,4 \mathrm{~b}}$ systems have already been developed. For instance, a piperidin-3-ol bearing appendages with versatile functionality at the 2 - and 6 -positions would serve as a building block for efficient syntheses of piperidin-3ols found in natural products, ${ }^{5}$ and several methods for their stereoselective construction have been reported. These methods involve strategies starting with photooxygenation of a pyridine ring system, ${ }^{6}$ intramolecular cyclisation reaction of a 2 -hydroxy5 -ketoamine, ${ }^{7}$ oxidative cleavage of a 2-azabicyclo[2.2.2]octan5 -one ring system ${ }^{8}$ and an aza-annulation reaction of an enamino ester with acrylic anhydride. ${ }^{9}$ Other methods which have been investigated for this chiral construction involve an aza-A chmatowicz rearrangement of a furan derivative, ${ }^{10}$ an intramolecular double Michael reaction ${ }^{11}$ or palladiumcatalysed cyclisation ${ }^{12}$ of an N -protected amino-olefin, radical cyclisation of a 2,3-dihydrooxazolone derivative ${ }^{13}$ and a 1,3 dipolar cycloaddition of a nitrone to a dipolarophile ${ }^{14} \mathrm{H}$ ow ever, no example of the asymmetric synthesis of piperidin-3-ols starting with desymmetrisation of prochiral substrates has appeared to date. Our previous report on the chiral synthesis of 2,6 -disubstituted piperidines, starting with the asymmetric enolisation of a σ-symmetric nitrogen-bridged bicyclic ketone, demonstrated the asymmetric differentiation of a rigid piperidone system with a chiral base. A Iternatively, a meso glycol such as 9 -azabicyclo[3.3.1]nonane-2,4-diol, if readily available, could be differentiated with a chemo-enzymatic method to result in analogous desymmetrisation of the σ-symmetric bicyclo system. It was of interest to determine whether the ring differentiation of a conjoined twin piperidine system such as 9 -azabicyclo[3.3.1]nonane-2,8-diol by chemo-enzymatic differentiation of the ring-crossed meso glycol system could be effected in a highly enantiotoposelective fashion. To this end, we examined a strategy for the asymmetric construction of a piper-idin-3-ol 1 via an enantiodivergent process starting with a lipase-mediated enantiotoposelective reaction of an azabicyclic meso glycol system 2 ($\mathrm{R}^{1}=\mathrm{H}$ or Ac), followed by chemical transformation of the chiral adduct into both enantiomers of $\mathbf{1}$ in an optically pure state, as depicted in Fig. 1.

H erein we describe a full account of the experimental details of the chiral construction of both enantiomers of 1 and examine their application to the synthesis of piperidin-3-0l alkaloids. ${ }^{15}$

Fig. 1

Results and discussion

First, we examined the preparation of the starting material 2 ($\mathrm{R}^{1}=\mathrm{H}$ or Ac); a substrate for the lipase-mediated enantiotoposelective reaction. The dealkylative carbamoylation of the bicyclic amine 3^{16} with $\mathrm{ClCO}_{2} \mathrm{M}$ e afforded the desired urethane 4 in 95% yield. Allylic oxidation of 4 with SeO_{2} gave the alcohol 5 in 77% yield, which was converted by oxidation with pyridinium chlorochromate (PCC) into the enone 6 in 90% yield. Hydrogenation of 6 over 5\% Pd-C gave the ketone 7 in 98\% yield, reduction of which with NaBH_{4} and subsequent hydrolysis of the resulting monoacetate afforded the meso glycol $2\left(R^{1}=H\right)$ in 77% yield from 7. A cetylation without hydrolysis of the above monoacetate provided the meso acetate $2\left(R^{1}=A c\right)$ in 74% yield from 7 (Scheme 1). With $2\left(R^{1}=H\right.$ or Ac) in hand, we examined the lipase-mediated ring differentiation reaction, and the results are summarised in Tables 1 and 2.

A s shown in Tables 1 and 2, the use of lipase CE gave the best results in both differentiation reactions. Recrystallisation, from $\mathrm{Pr}_{2}{ }_{2} \mathrm{O}$, of the enantiomeric ketone $\mathbf{7}$ derived from oxidation of the enantiomeric monoacetate with PCC furnished an enantiomerically pure sample of (+)- or (-)-7 in 74 or 65% yield, respectively, from $2\left(R^{1}=H\right.$ or $\left.A c\right)$. The treatment of (+)-7 with $\mathrm{HC}(\mathrm{OM} \mathrm{e})_{3}$ in the presence of catalytic amounts of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $4 \AA$ molecular sieves gave the enol ether (+)-8 in 86% yield. Ozonolysis of $(+)-8$ afforded the desired piperidine $(+)-1$ in 98% yield. Similarly, (-)-7 was converted into the enantiomer (-)-1 as depicted in Scheme 2.
In order to establish the absolute stereochemistry of (+)-1, we next examined the transformation of (+)-1 into the known piperidine (-)-17. ${ }^{17}$ Protection of the hydroxy group in (+)-1 with tert-butyldiphenylsilyl chloride (TBD PSCI) gave the silyl ether (+)-9 in 94% yield. Hydrolysis of (+)-9 and subsequent reaction of the resulting alcohol with methoxymethyl chloride ($\mathrm{M} O \mathrm{MCI}$) in the presence of the H ünig base

Table $1^{\text {a }}$

$(+)-7 \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$

Lipase $^{\text {b }}$	Solvent	t/h	Y ield (\%) $^{\text {c }}$	(\%ee) $^{\text {d }}$
CE	$\mathrm{C}_{6} \mathrm{H}_{6}$	98	$38(99)$	32
CE	$\mathrm{Pr}_{2}{ }_{2} \mathrm{O}$	109	$85(99)$	$90(>99)$
AY	$\mathrm{Pr}_{2}{ }^{2} \mathrm{O}$	87	$33(99)$	56
CCL	$\mathrm{Pr}_{2}{ }_{2} \mathrm{O}$	91	$15(94)$	54

${ }^{\text {a }}$ All runs were conducted with the substrate (0.23 mmol), lipase (100 mg) and vinyl acetate (2 equiv.) in the organic solvent ($10 \mathrm{~cm}^{3}$); see Experimental section. ${ }^{\text {b }}$ Lipase CE (from H umicola lanuginosa) and AY (from Candida rugosa) were supplied by the A mano Pharmaceutical Co., Ltd. and CCL (from C andida cylindracea) was purchased from the Sigma Chemical Co., L td. ${ }^{\text {c }}$ Y ields for the isolated monoacetate. Y ields in parentheses are those based on the conversion rate. ${ }^{d}$ Optical yields were determined by HPLC analyses by using a column packed with Chiralpak AD (EtOH-hexane, 1:9) after oxidation of the monoacetate with PCC. O ptical yield in parentheses is based on a sample after single recrystallisation from $\mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{O}$.

Scheme 1 Reagents and conditions: a, $\mathrm{CICO}_{2} \mathrm{Me}, \mathrm{CHCl}_{3}$, reflux (95\%); b, SeO_{2}, dioxane- $\mathrm{H}_{2} \mathrm{O}=10: 1$ (77\%); c, PCC, A cON a (90\%); d, $\mathrm{H}_{2}, 5 \%$ Pd-C (95\%); e, $\mathrm{NaBH}_{4}, \mathrm{M} \mathrm{eOH} ; \mathrm{f}, 10 \%$ aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (77% over 2 steps); $\mathrm{g}, \mathrm{A} \mathrm{c}_{2} \mathrm{O}$, pyridine (74% over 2 steps)
afforded the piperidine (+)-10 in 88% yield in two steps. Reduction of $(+)-10$ with Super-H ydride afforded the alcohol $(-)-11$ in 87% yield. The PCC oxidation of (-)-11 followed by treatment of the resulting aldehyde with ethanedithiol in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ afforded the dithioacetal $(+)-\mathbf{1 2}$ in 68% yield. Desulfurisation of (+)-12 with Raney nickel (W-4) gave the piperidine 13 in 95% yield. Removal of the TBDPS group in 13 with tetrabutylammonium fluoride (TBAF) afforded the alcohol (+)-14 in 85% yield, and its oxidation with pyridinium dichromate (PDC) in N, N-dimethylformamide (D M F), followed by esterification with $\mathrm{CH}_{2} \mathrm{~N}_{2}$, provided the methyl ester (+)- $\mathbf{1 5}$ in 66% yield. Removal of the M OM group in $(+)-15$ with acid followed by mesylation and subsequent elimination at the resulting methanesulfonate with 1,8-diazabicyclo[5.4.0]undec-7-ene (D BU) gave the olefin 16 in 48% overall yield. Finally, hydrogenation of 16 over 5\% Pd-C in MeOH furnished the known piperidine (-)-17, which had a value of $[a]_{0}^{26}-40.0$ (lit. ${ }^{17}[a]_{b}^{26}-38.9$). Thus, the absolute stereochemistry of (+)-1 was determined to be ($2 \mathrm{~S}, 3 \mathrm{R}, 6 \mathrm{R}$) (Scheme 3).

Table 2 ${ }^{\text {a }}$

${ }^{\text {a }}$ All runs were conducted with the substrate (0.17 mmol), lipase (100 mg) and phosphate buffer in the solvent ($6 \mathrm{~cm}^{3}$); see Experimental section. ${ }^{\text {b }}$ PLE (pig liver esterase) was supplied by the A mano Pharmaceutical Co., Ltd. and PPL (porcine pancreas lipase) was purchased from the Sigma Chemical Co., Ltd. ${ }^{\text {c }}$ Y ields for the isolated monoacetate. Y ields in parentheses are those based on the conversion rate. ${ }^{d}$ D etermined for (-)-7 as in the transesterification of $\mathbf{2}$. Optical yield in parentheses is based on a sample after recrystallisation twice from $\mathrm{Pr}_{2}{ }_{2} \mathrm{O}$.

Scheme 2 Reagents and conditions: $a, \mathrm{HC}(\mathrm{OM} \mathrm{e})_{3}, \mathrm{cat.}^{2} \mathrm{H}_{2} \mathrm{SO}_{4}(86 \%)$; b, $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(10: 1),-78^{\circ} \mathrm{C}$; $\mathrm{C}, \mathrm{NaBH}_{4},-78 \sim 0{ }^{\circ} \mathrm{C}$ (98% over 2 steps)

With the chiral building block (+)-1 of established absolute stereochemistry, we next examined the chiral synthesis of the piperidin-3-ol alkaloids (-)-cassine and (+)-spectaline. The alcohol (+)-14 was converted into the diene 18 in 86% yield via Swern oxidation and subsequent Wittig reaction. The Wacker oxidation of 18 afforded the ketone 19 in 70% yield. Catalytic hydrogenation of $\mathbf{1 9}$ over 5\% Pd-C gave the saturated ketone $(+)-20$ and its treatment with trimethylsilyl iodide ($\mathrm{M}_{3} \mathrm{Sil}$) in hot CHCl_{3} furnished (-)-cassine $\left\{[a]_{D}^{26}-0.7\right.$ (c 0.59, EtOH); lit., ${ }^{18}[a]_{0}^{25}-0.6$ (c 8.0, EtOH)\} in 65% yield (Scheme 4). The synthetic sample of (-)-cassine was in good accordance with the natural product in its physical properties ${ }^{18 \mathrm{a}}$ and possessed spectral properties (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) identical with those of the synthetic racemate. ${ }^{18 \mathrm{c}}$ Similarly, (+)-spectaline $\left\{[a]_{D}^{26}+9.0\right.$ (c $1.3, \mathrm{CHCl}_{3}$); lit., ${ }^{19}[a]_{D}^{25}+8.0$ (c $0.27, \mathrm{CHCl}_{3}$); lit., ${ }^{5 \mathrm{c}}[a]_{D}^{25}$ $\left.-8.2\left(\mathrm{c} 0.32, \mathrm{CHCl}_{3}\right)\right\}$ was synthesised from the alcohol (-)-14. The spectral data for the synthetic (+)-spectaline was in good accordance with those for (\pm)-spectaline. ${ }^{18 c}$

C onclusions

We have achieved the enantiodivergent synthesis of a cis,cis 3protected 2,6 -disubstituted piperidin-3-ol 1 using a hybrid process (biochemical method), and have demonstrated its utility as a chiral building block in the first total synthesis of (-)-cassine and (+)-spectaline

a $-(+) 1 \mathrm{R}=\mathrm{H}$

(+)-12
g

16

Scheme 3 Reagents and conditions: a, TBD PSCI, Et ${ }_{3}$ N, DMAP (94\%) b, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{M} \mathrm{eOH} ; \mathrm{c}, \mathrm{M} \mathrm{OM} \mathrm{CI} ,\mathrm{H} \mathrm{ünig} \mathrm{base} \mathrm{(88} \mathrm{\%} \mathrm{over} 2$ steps); d, SuperH ydride (87%); e, PCC, A cON a; f, ethanedithiol, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (68% over 2 steps); g, Raney Ni (W-4) (95\%); h, TBAF (85\%); i, PDC, DM F; j, $\mathrm{CH}_{2} \mathrm{~N}_{2}$ (66% over 2 steps); k, conc. $\mathrm{HCl}, \mathrm{M} \mathrm{eOH}$; I, M sCl, pyridine; m, D BU, toluene (48\% over 3 steps); n, $\mathrm{H}_{2} 5 \%$ Pd-C (80\%)

Experimental

M elting points were determined with a Yanaco micro melting point apparatus and were uncorrected. M icroanalyses were performed by the M icroanalysis Center of Toyama M edical and Pharmaceutical University. Infrared spectra (IR) were measured with a Perkin-Elmer 1600 series FT-IR spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N M R spectra were performed at 270 or 67.5 M Hz on a JEOL GX270 instrument with tetramethylsilane as an internal standard. Resonance patterns in ${ }^{1} \mathrm{H} N \mathrm{M}$ R spectra are shown as $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad and app. $=$ apparent. Carbon signals were assigned by a DEPT pulse sequence and are shown as $\mathrm{u}=$ methyl or methine, $\mathrm{d}=$ methylene and $\mathrm{s}=$ quaternary carbons. M ass spectra (M S) and high-resolution mass spectra (HRMS) were measured on a JEOL JM S D-200 spectrometer. Optical rotations were measured on a JA SCO DIP-140 polarimeter and are given in units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. Column chromatography was performed on silica gel [Fuji-D avison BW-200 or M erck 60 (N o 9385)].

M ethyl 6-acetoxy-9-azabicyclo[3.3.1]non-2-ene-9-carboxylate 4 To a stirred solution of 6-acetoxy-9-methyl-9-azabicyclo-[3.3.1]non-2-ene 3^{16} ($13.93 \mathrm{~g}, 71.4 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}\left(200 \mathrm{~cm}^{3}\right)$ was added $\mathrm{CICO}_{2} \mathrm{Me}$ e $\left.11.0 \mathrm{~cm}^{3}, 142.8 \mathrm{mmol}\right)$, and the mixture was refluxed for 1 h . A fter cooling, the reaction mixture was washed with 10% aqueous $\mathrm{HCl}\left(15 \mathrm{~cm}^{3} \times 3\right)$ and then with $\mathrm{H}_{2} \mathrm{O}$ ($15 \mathrm{~cm}^{3} \times 5$), and the organic layer was dried over $\mathrm{M} \mathrm{gSO}_{4}$ and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(180 \mathrm{~g}$, hexane-acetone 10:1~5:1) to afford $4(16.2 \mathrm{~g}, 95 \%)$ as a pale yellow oil (Found: M^{+}, 239.1149. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $\mathrm{M}, 239.1156$) $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3033,2953,1735,1703,1654,1450,1412,1368$,

(-)-cassine
$(+)-20$

Scheme 4 Reagents and conditions: a, Swern oxidn.; b, $\mathrm{CH}_{2}=\mathrm{CH}$ $\left(\mathrm{CH}_{2}\right)_{8} \mathrm{P}^{+} \mathrm{Ph}_{3} \mathrm{Br}^{-}$, $\mathrm{Bu} \mathrm{n}^{\mathrm{L}} \mathrm{Li}, \mathrm{THF}, 0^{\circ} \mathrm{C}$-room temp. (86% in 2 steps); $\mathrm{C}, \mathrm{O}_{2}$, $\mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{DMF}-\mathrm{H}_{2} \mathrm{O}$ (70\%); d, $\mathrm{H}_{2}, 5 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}$ (92\%); e, TM SI, CHCl_{3}, reflux (65%); f, $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{P}^{+} \mathrm{Ph}_{3} \mathrm{Br}^{-}, \mathrm{Bu}^{n} \mathrm{Li}, \mathrm{TH}$ F, $0^{\circ} \mathrm{C} \sim$ room temp. (77\% over 2 steps); $\mathrm{g}, \mathrm{O}_{2}, \mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{DM} \mathrm{F-H} \mathrm{H}_{2} \mathrm{O}$ (75%); $h, \mathrm{H}_{2}, 5 \% \mathrm{Pd}-\mathrm{C}, \mathrm{M} \mathrm{eOH}(97 \%)$; i, TM SI, CHCl_{3}, reflux (70\%)

1351, 1338, 1325, 1310, 1290, 1241, 1197, 1115, 1089, 1037, 951 and 766; $\delta_{\mathrm{H}} 1.57-1.92\left(4 \mathrm{H}, \mathrm{br} \mathrm{m}, 7-\mathrm{and} 8-\mathrm{H}_{2}\right), 2.06(3 \mathrm{H}, \mathrm{s}$, COM e), 2.15-2.50 (2 H, br m, $=\mathrm{CCH}_{2}$), $3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$), 4.41-4.54 (1.5H , br m, A cOCH and 1- or 5-H), 4.65 (0.5H , br, 1- or 5-H), 4.83-4.87 (1H , br m, 1- or 5-H), 5.67-5.72 (1H, br $\mathrm{m},=\mathrm{CH})$ and $5.91-5.93(1 \mathrm{H}, \mathrm{br} \mathrm{m},=\mathrm{CH}) ; \mathrm{m} / \mathrm{z} 240\left(\mathrm{M}^{+}+1\right)$, $239\left(\mathrm{M}^{+}\right)$and 59 (100\%).

M ethyl 6-acetoxy-4-hydroxy-9-azabicyclo[3.3.1]non-2-ene-9carboxylate 5

To a stirred solution of $4(2.3 \mathrm{~g}, 9.74 \mathrm{mmol})$ in dioxane ($50 \mathrm{~cm}^{3}$) and $\mathrm{H}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ was added $\mathrm{SeO}_{2}(2.7 \mathrm{~g}, 24.35 \mathrm{mmol})$, and the resulting suspension was refluxed for 14 h . A fter cooling, the insoluble material was removed by filtration and the filtrate was evaporated to give a pale yellow viscous oil, which was taken up in hot $\mathrm{CHCl}_{3}\left(100 \mathrm{~cm}^{3}\right)$. The CHCl_{3} layer was washed with saturated aqueous $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3} \times 2\right)$, dried over $\mathrm{M} \mathrm{gSO}_{4}$ and evaporated to give a pale yellow viscous oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(40 \mathrm{~g}$, hexaneacetone, $15: 1 \sim 5: 1$) to afford 5 ($1.9 \mathrm{~g}, 77 \%$) as a pale yellow viscous oil (Found: M^{+}, 255.1147. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires M , 255.1187); $v_{\max }$ (neat)/cm ${ }^{-1} 3427,2955,1732,1687,1651,1455$, 1416, 1353, 1329, 1290, 1236, 1204, 1096 and 1039; $\delta_{\mathrm{H}} 1.50-1.90$ ($4 \mathrm{H}, \mathrm{br}$ m, 7 - and 8- H_{2}), 2.08 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}$), 3.35-3.60 (1 H , br, OH), 3.70 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 4.10-4.22 (1 H , br, H OCH), 4.50$4.68(2 \mathrm{H}, \mathrm{br} \mathrm{m}, 1$ - and $5-\mathrm{H}), 4.82(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 11.5$ and 5.5 , $\mathrm{AcOCH}), 5.87-5.89(1 \mathrm{H}, \mathrm{br},=\mathrm{CH})$ and $6.12(1 \mathrm{H}, \mathrm{app}$. dd, J 10 and $4,=C H$); $\delta_{c} 20.67(u), 21.32(d), 25.77$ and 26.17 (each d, due to rotamers), 45.81 and 46.56 (each u, due to rotamers), $52.38(\mathrm{u}), 55.94$ and 56.55 (each u, due to rotamers), 61.75 (u),
68.43 and 68.65 (each u, due to rotamers), 128.19 and 128.72 (each u, due to rotamers), 129.08 and 129.58 (each u, due to rotamers), 154.81 and 154.98 (each s, due to rotamers) and $169.54(\mathrm{~s}) ; \mathrm{m} / \mathrm{z} 256\left(\mathrm{M}^{+}+1\right), 255\left(\mathrm{M}^{+}\right)$and 118 (100%).

M ethyl 6-acetoxy-4-oxo-9-azabicyclo[3.3.1]non-2-ene-9-carboxylate 6

To a stirred suspension of PCC ($810 \mathrm{mg}, 3.76 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(20 \mathrm{~cm}^{3}\right)$ was added a solution of $5(643 \mathrm{mg}, 2.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the resulting suspension was stirred for 3 h at room temperature. A fter removal of the insoluble material by filtration, the filtrate was evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(20 \mathrm{~g}$, hexane-acetone, $15: 1 \sim 5: 1)$ to afford $6(575 \mathrm{mg}$ 90%) as a cyrstalline solid, mp $115-117^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 56.88$; H, $6.02 ; \mathrm{N}, 5.56 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5}$ requires C, 56.91; H, 5.97; N, 5.53\%); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 2962, 2884, 1748, 1697, 1682s, 1619, 1449 1414, 1376, 1361, 1332, 1286, 1245, 1227, 1200, 1138, 1108 1062, 1042 and $972 ; \delta_{\mathrm{H}} 1.71-2.18$ ($4 \mathrm{H}, \mathrm{br} \mathrm{m}, 7-$ and $8-\mathrm{H}_{2}$), 2.07 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COM}\right.$ e), $3.73\left(3 \mathrm{H}, \mathrm{br}\right.$ s, $\mathrm{CO}_{2} \mathrm{M}$ e), $4.83(2 \mathrm{H}, \mathrm{br}, 1-\mathrm{and}$ $5-\mathrm{H}), 4.98$ ($1 \mathrm{H}, \mathrm{br}, \mathrm{A} \mathrm{cOCH}$), 6.31 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10,2-\mathrm{H}$) and 7.01 (1 $\mathrm{H}, \mathrm{br}, 3-\mathrm{H}$); $\delta_{\mathrm{c}} 20.62$ and 20.67 (each u , due to rotamers), 21.68 (d), 24.21 and 24.63 (each d, due to rotamers), 47.27 and 47.94 (each u, due to rotamers), 52.81 and 52.90 (each u, due to rotamers), 58.20 and 58.67 (each u, due to rotamers), 66.98 (u) 130.69 (u), 147.16 and 147.25 (each u, due to rotamers), 154.13 (s), 169.78 (s) and 192.19 (s); m/z $254\left(\mathrm{M}^{+}+1\right), 253\left(\mathrm{M}^{+}\right)$and 53 (100\%).

M ethyl 2-acetoxy-8-ox0-9-azabicyclo[3.3.1]nonane-9-carboxylate 7

To a solution of $6(1.34 \mathrm{~g}, 5.3 \mathrm{mmol})$ in $\mathrm{M} \mathrm{eOH}\left(30 \mathrm{~cm}^{3}\right)$ was added $5 \% \mathrm{Pd}-\mathrm{C}(50 \mathrm{mg}$), and the resulting suspension was hydrogenated at 1 atm for 6 h . The catalyst was removed by filtration through a Celite pad and the filtrate was evaporated to give essentially pure $7(1.32 \mathrm{~g}, 98 \%)$ as a colourless solid, which was used in the next step without further purification. Recrystallisation of the crude ketone from $\mathrm{Pr}_{2}{ }_{2} \mathrm{O}$-benzene gave an analytically pure sample, $\mathrm{mp} 125-127^{\circ} \mathrm{C}$ (Found: C, 56.47; $\mathrm{H}, 6.71 ; \mathrm{N}, 5.40 . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N} \mathrm{O}_{5}$ requires $\mathrm{C}, 56.46 ; \mathrm{H}, 6.71 ; \mathrm{N}$, $5.49 \%) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2962,2937,2908,2884,1737,1716$, 1687, 1476, 1451, 1423, 1404, 1380, 1367, 1330, 1308, 1287 1272, 1246, 1229, 1193, 1114, 1090, 1071, 1040 and 992; δ_{H} 1.67-2.13 (5H, br m, 3-, 4- H_{2} and $6-\mathrm{H}$), 2.08 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}$), 2.30-2.63 ($3 \mathrm{H}, \mathrm{br}$ m, 6-H and $7-\mathrm{H}_{2}$), $3.73\left(3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right.$), 4.45-4.62 (1H , br, 1- or 5-H) and 4.76-4.91 ($2 \mathrm{H}, \mathrm{br}$ m, A cOCH and 1- or $5-\mathrm{H}$); $\delta_{\mathrm{c}} 20.93$ (u), 24.50 (d), 25.61 and 25.66 (each d, due to rotamers), 28.90 and 28.97 (each d, due to rotamers), 37.28 (d), 43.91 (u), 53.06 (u), 60.37 and 60.40 (each u, due to rotamers), 68.87 (u), 155.01 (s), 170.06 and 170.10 (each s, due to rotamers) and 205.94 (s); m/z $256\left(\mathrm{M}^{+}+1\right), 255\left(\mathrm{M}^{+}\right)$and 54 (100\%).

M ethyl 2,8-dihydroxy-9-azabicyclo[3.3.1]nonane-9-carboxylate $2\left(\mathrm{R}^{1}=\mathrm{H}\right)$

To a stirred solution of $7(1 \mathrm{~g}, 3.92 \mathrm{mmol})$ in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(100 \mathrm{mg}, 2.63 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 10 min at room temperature. To the mixture was added 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at room temperature. The solvent was removed and the residue was taken up in hot CHCl_{3} ($10 \mathrm{~cm}^{3} \times 6$). The combined CHCl_{3} layers were dried over $\mathrm{M} \mathrm{SO}_{4}$ and evaporated to give a colourless viscous oil, which was purified by column chromatography on $\mathrm{SiO}_{2}\left(20 \mathrm{~g}, \mathrm{CHCl}_{3}-\right.$ EtOH, 1:0~30:1) to afford $2\left(R^{1}=H, 653 \mathrm{mg}, 77 \%\right.$ from 7) as a colourless solid. Recrystallisation of the solid from benzene gave an analytically pure sample as colourless needles, mp 134$135{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 55.83 ; \mathrm{H}, 7.75 ; \mathrm{N}, 6.41 . \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires C, 55.80; H , 7.96; N, 6.51\%); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3263,2996,2956$, 2908, 2860, 2839, 1698, 1490, 1452, 1422, 1404, 1378, 1356,

1329, 1302, 1277, 1250, 1207, 1165, 1124, 1100, 1074, 1058, 1019 and $950 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.79-1.98 (4H , m, 3- and 4- H_{2}), 2.03$2.29\left(4 \mathrm{H}, \mathrm{m}, 6-\right.$ and $\left.7-\mathrm{H}_{2}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 4.05-4.20(3 \mathrm{H}$, br m, 1- H_{2} and OH), 4.44 and 4.54 (1 H , each app. t, J $5.5,5-\mathrm{H}$) and 4.81 and $4.94(2 \mathrm{H}$, app. d, J $6,2-$ and $8-\mathrm{H}) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}\right.$, $25^{\circ} \mathrm{C}$) 1.67-1.74 ($4 \mathrm{H}, \mathrm{m}, 3-$ and $4-\mathrm{H}_{2}$), 1.84-2.02 ($4 \mathrm{H}, \mathrm{m}, 6$ - and $\left.7-\mathrm{H}_{2}\right), 3.59$ and $3.61\left(3 \mathrm{H}\right.$, each s, $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), $3.83(2 \mathrm{H}$, septet, J 6 , $5-\mathrm{H}$ and OH), 3.99 and $4.02(1 \mathrm{H}$, each app. t, J 4, 1-H), 4.19 and $4.26(1 \mathrm{H}$, each ca. $\mathrm{t}, \mathrm{J} 5, \mathrm{OH})$ and $5.29(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.5$ and $6.5,2-$ and $8-\mathrm{H}) ; \delta_{\mathrm{H}}\left(\left[^{2} \mathrm{H}_{6}\right] \mathrm{DM} \mathrm{SO}, 120^{\circ} \mathrm{C}\right) 1.66-1.80(4 \mathrm{H}, \mathrm{m}$, $3-$ and $\left.4-\mathrm{H}_{2}\right), 1.86-2.02\left(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{and} 7-\mathrm{H}_{2}\right), 3.61(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), $3.86(2 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 4.02(1 \mathrm{H}, \mathrm{br}, 5-\mathrm{H}), 4.26(1 \mathrm{H}$, app. t, J $6,1-\mathrm{H})$ and $4.91(2 \mathrm{H}, \mathrm{br}, 2-$ and $8-\mathrm{H}) ; \delta_{\mathrm{c}}\left(\left[^{2} \mathrm{H}_{6}\right] \mathrm{DM}\right.$ SO, $\left.25^{\circ} \mathrm{C}\right)$ 28.06 and 28.54 (each d, due to rotamers), 30.53 (d), 44.19 and 44.92 (each u, due to rotamers), 51.52 (u), 52.21, 52.25 and 52.34 (each u, due to rotamers), 70.24 and 70.31 (each u, due to rotamers) and 154.19 and 154.41 (each s, due to rotamers); $\delta_{\mathrm{c}}\left({ }^{2} \mathrm{H}_{6}\right.$]D M SO, $120^{\circ} \mathrm{C}$) 27.74 (d), 29.95 (d), 44.30 (u), 51.36 (u), $51.84(\mathrm{u}), 70.04(\mathrm{u})$ and $153.94(\mathrm{~s}) ; \mathrm{m} / \mathrm{z} 216\left(\mathrm{M}^{+}+1\right), 215$ $\left(\mathrm{M}^{+}\right)$and 169 (100\%)

M ethyl 2,8-diacetoxy-9-azabicyclo[3.3.1]nonane-9-carboxylate $2\left(\mathbf{R}^{1}=A c\right)$

To a stirred solution of $7(2.45 \mathrm{~g}, 10.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ cm^{3}) and $\mathrm{M} \mathrm{eOH}\left(2 \mathrm{~cm}^{3}\right)$ was added $\mathrm{NaBH}_{4}(200 \mathrm{mg}, 5.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ and then at room temperature for 5 min . The reaction was quenched with $10 \% \mathrm{AcOH}$, and the solvent was removed. The residue was taken up in hot $\mathrm{CHCl}_{3}\left(15 \mathrm{~cm}^{3} \times 5\right)$, and the combined CHCl_{3} layer was dried over $\mathrm{M} \mathrm{gSO}_{4}$ and evaporated to give a colourless viscous oil. To a stirred solution of the oil obtained above in pyridine ($3 \mathrm{~cm}^{3}$) was added $\mathrm{Ac}_{2} \mathrm{O}\left(2 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 18 h at room temperature. The solvent was removed, and the residue was purified by column chromatography on $\mathrm{SiO}_{2}(35 \mathrm{~g}$, hexane-acetone, $15: 1-10: 1)$ to afford $2\left(\mathrm{R}^{1}=\mathrm{Ac}\right.$, $2.32 \mathrm{~g}, 74 \%$ from 7) as a colourless solid. Recrystallisation of the solid from $\mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{O}$-benzene gave an analytically pure sample as a colourless solid, mp $127-129^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 56.11$; $\mathrm{H}, 7.06$; $\mathrm{N}, 4.66 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{6}$ requires $\mathrm{C}, 56.17 ; \mathrm{H}, 7.07 ; \mathrm{N}, 4.68 \%$); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2996,2962,2873,1738,1691,1449,1411,1378$, $1332,1290,1259,1229,1192,1048$ and 1031; $\delta_{\mathrm{H}} 1.73-2.31$ (8 H , br m, 3-, 4-, 6- and 7-H 2), 2.07 ($6 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e} \times 2$), $3.72(3 \mathrm{H}$, s, $\mathrm{CO}_{2} \mathrm{Me}$), 4.18 and 4.31 (1 H , each br, $5-\mathrm{H}$), 4.67 and 4.77 (1 H , each br app. t, J 5, 1-H) and 5.03 ($2 \mathrm{H}, \mathrm{dt}$, J 16 and 5.5, 2- and $8-\mathrm{H}$); $\delta_{\mathrm{c}} 21.11(\mathrm{u}), 22.46$ and 22.84 (each d, due to rotamers), 25.84 (d), 46.79 and 47.43 (each u, due to rotamers), 52.85 (u), 70.35 and 70.64 (each u, due to rotamers), 155.00 (s) and 169.83 and 170.04 (each s, due to rotamers); m/z $300\left(\mathrm{M}^{+}+1\right), 299$ $\left(\mathrm{M}^{+}\right)$and 196 (100\%).

G eneral procedure for the lipase-mediated transesterification of the diol $2\left(\mathbf{R}^{1}=\mathbf{H}\right)$

To a stirred solution of $2\left(R^{1}=\mathrm{H}, 50 \mathrm{mg}, 0.23 \mathrm{mmol}\right)$ in the appropriate solvent ($10 \mathrm{~cm}^{3}$) were added a lipase preparation (100 mg) and vinyl acetate ($0.1 \mathrm{~cm}^{3}, 1 \mathrm{mmol}$), and the resulting suspension was stirred at $32-35^{\circ} \mathrm{C}$. The suspension was filtered through a Celite pad and the lipase preparation remaining on the pad was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate and washings were combined and evaporated to give an oil, which was fractionated by column chromatography on SiO_{2} (10 g , hexaneacetone, $8: 1-4: 1$) to afford a monoacetate.
To a stirred suspension of PCC (2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added the monoacetate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the resulting suspension was stirred for 12 h at room temperature Following oxidation, the enantiomeric excess (ee) of the monoacetate was determined by H PLC analysis using a column packed with Chiralcel AD (EtOH-hexane, 1:9). Direct column chromatography of the reaction mixture on $\mathrm{SiO}_{2}(10 \mathrm{~g}$, hexaneacetone, 8:1) afforded (+)-7 (98\%) as a colourless solid, which was recrystallised from $\mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{O}$ to give an enantiomerically pure
sample [74\% from $2\left(\mathrm{R}^{\mathbf{1}}=\mathrm{H}\right)$], $\mathrm{mp} 96-97^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 56.44$ $\mathrm{H}, 6.81 ; \mathrm{N}, 5.54 . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N} \mathrm{O}_{5}$ requires $\mathrm{C}, 56.46 ; \mathrm{H}, 6.71 ; \mathrm{N}$, 5.49%); $[a]_{D}^{25}+116.5$ (c 1.07, CHCl_{3}). The spectral properties (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ N M R) were identical with those of the racemate.

G eneral procedure for the lipase-mediated hydrolysis of the diacetate $2\left(\mathbf{R}^{1}=\mathbf{A c}\right)$

To a stirred suspension of $2\left(R^{1}=A c, 50 \mathrm{mg}, 0.17 \mathrm{mmol}\right)$ in a phosphate buffer ($\mathrm{pH} 7,6 \mathrm{~cm}^{3}$) was added a lipase preparation (100 mg), and the resulting suspension was stirred at $32-35^{\circ} \mathrm{C}$. A fter extraction of the aqueous layer with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 8\right)$, the organic extracts were combined, dried over MgSO_{4} and evaporated to give an oil, which was fractionated by column chromatography on SiO_{2} (10 g, hexane-acetone, 8:1-4:1) to afford the monoacetate. The ee of the monoacetate was determined by the same procedure as that for the product from the transesterification of the diol $\mathbf{2}\left(\mathrm{R}^{1}=\mathrm{H}\right)$. The enantiomerically pure (-)-7 was obtained in 65% yield from $2\left(R^{1}=A c\right)$ by recrystallisation twice from $\mathrm{Pr}_{2}^{\mathrm{i}} \mathrm{O}$ to afford a colourless solid, $\mathrm{mp} 96-97^{\circ} \mathrm{C}$ (Found: C, 56.69; H, 6.72; $\mathrm{N}, 5.73 . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires C, 56.46; H, 6.71; N, 5.49\%); [$\alpha]_{D}^{25}-116.1$ (c 1.09, CHCl_{3}). The spectral properties (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C} N M \mathrm{R}$) were identical with those of the racemate.

M ethyl (+)-8-acetoxy-2-methoxy-9-azabicyclo[3.3.1]non-2-ene-9-carboxylate (+)-8

To a stirred solution of (+)-7 ($680 \mathrm{mg}, 2.67 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(20 \mathrm{~cm}^{3}\right)$ were added $\mathrm{HC}(\mathrm{OM} \mathrm{e})_{3}\left(5.3 \mathrm{~cm}^{3}, 95.4 \mathrm{mmol}\right), 5 \AA \mathrm{~mol}$. sieves and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (cat.) at $0^{\circ} \mathrm{C}$, and the resulting suspension was stirred for 12 h at room temperature The reaction was quenched with sat. aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 3\right)$. The organic extracts were combined, washed with $\mathrm{H}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3} \times 1\right)$, dried over $\mathrm{M} \mathrm{gSO}_{4}$ and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(30 \mathrm{~g}$, hexaneacetone, $40: 1-10: 1)$ to afford (+)-8 ($617 \mathrm{mg}, 86 \%$) as a colourless solid, mp 100-101 ${ }^{\circ} \mathrm{C}$ (Found: C, 57.79; H, 7.17; N, 5.23; M^{+}, 269.1232. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{5}$ requires $\mathrm{C}, 57.98 ; \mathrm{H}, 7.11 ; \mathrm{N}, 5.20 \%$; M, 269.1262); $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 2953, 2845, 1741, 1703, 1673, 1452, 1415, 1379, 1362, 1346, 1326, 1299, 1282, 1235, 1174, $1153,1111,1091,1067,1038,1019$ and $976 ; \delta_{\mathrm{H}} 1.64-2.06$ ($5 \mathrm{H}, \mathrm{m}$, $6-, 7-\mathrm{H}_{2}$ and one of $4-\mathrm{H}_{2}$), $2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{COM}$ e), 2.50-2.73 (1 H , br m, one of $4-\mathrm{H}_{2}$), $3.52(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, 4.32-4.44 ($1 \mathrm{H}, \mathrm{br}$ m, 5-H) and 4.75-4.81 (3H, br m, 1-, 3- and $8-\mathrm{H}$); $\delta_{\mathrm{c}} 21.01$ (u), 22.75 (d), 27.70 (d), 30.65 (d), 44.24 (u), 51.01 (u), 52.78 (u), 54.27 (u), $70.64(\mathrm{u}), 94.60(\mathrm{u}), 152.06$ (s), $154.98(\mathrm{~s})$ and $170.45(\mathrm{~s}) ; \mathrm{m} / \mathrm{z} 270\left(\mathrm{M}^{+}+1\right)$ and $69\left(\mathrm{M}^{+}, 100 \%\right)$; $[a]_{D}^{26}+109.0\left(\mathrm{c} 1.16, \mathrm{CHCl}_{3}\right.$).
In a similar manner, the enantiomer (-)-8 was obtained from (-)-7 in 86% yield; $[a]_{0}^{26}-108.8$ (c $0.91, \mathrm{CHCl}_{3}$).

D imethyl (+)-3-acetoxy-6-(2-hydroxyethyl)piperidine-1,2dicarboxylate (+)-1

Through a stirred solution of $(+)-8(280 \mathrm{mg}, 1.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$ was bubbled ozone at $-78^{\circ} \mathrm{C}$ for 30 min , and then $\mathrm{NaBH}_{4}(80 \mathrm{mg}, 2.08 \mathrm{mmol})$ was added to the reaction mixture at $-78^{\circ} \mathrm{C}$. The resulting suspension was stirred for 1 h at $0^{\circ} \mathrm{C}$, and the reaction was quenched with 10% aqueous AcOH . The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 3\right)$. The organic layer and extracts were combined, dried over $\mathrm{M} \mathrm{gSO}_{4}$ and evaporated to give a colourless oil which was purified by column chromatography on $\mathrm{SiO}_{2}(15 \mathrm{~g}$, hexane-acetone, $6: 1)$ to afford (+)-1 ($309 \mathrm{mg}, 98 \%$) as a colourless oil (Found: M^{+}, 303.1326. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{7}$ requires $\mathrm{M}, 303.1318$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3500,2956,1748,1694,1560,1508,1446,1405,1363,1331$, 1238, 1171, 1117, 1086, 1053 and 994; $\delta_{\mathrm{H}} 1.62-2.10$ ($6 \mathrm{H}, \mathrm{br} \mathrm{m}$, $4-, 5-\mathrm{H}_{2}$ and $\mathrm{HOCH}_{2} \mathrm{CH}_{2}$), 2.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COM}$ e), 3.40-3.60 (2 H , $\mathrm{m}, \mathrm{HOCH}_{2}$), 3.72 and 3.73 (each 3 H , each br s, $\mathrm{CO}_{2} \mathrm{Me}$) and 4.88-5.17 (3H, br m, 2-, 3- and 6-H); $\delta_{\mathrm{c}} 20.83(\mathrm{u}), 21.16$ (d),
26.69 (d), 36.66 (d), 46.39 (br, u), 51.99 (u), 53.56 (u), 54.91 (u), 59.00 (d), 68.78 (u), 157.39 (s), 169.94 (s) and 170.01 and 170.06 (each s, due to rotamers); m/z $304\left(\mathrm{M}^{+}+1\right), 303\left(\mathrm{M}^{+}\right)$and 226 (100%); $[\alpha]_{D}^{26}+19.0$ (c 1.52, CHCl_{3}).
In a similar manner, the enantiomer (-)-1 was obtained from (-)-8 in 98% yield; $[a]_{0}^{26}-18.6$ ($\mathbf{c} 1.76, \mathrm{CHCl}_{3}$).

D imethyl (+)-3-acetoxy-6-[2-(tert-butyIdiphenyIsilyloxy)ethyl] piperidine-1,2-dicarboxylate (+)-9

To a stirred solution of $(+)-1(300 \mathrm{mg}, 1.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3$ cm^{3}) were added $\mathrm{Et}_{3} \mathrm{~N}\left(0.40 \mathrm{~cm}^{3}, 2.60 \mathrm{mmol}\right)$, $\mathrm{Bu}^{\mathrm{t}} \mathrm{Ph}_{2} \mathrm{SiCl}(0.35$ $\mathrm{cm}^{3}, 1.30 \mathrm{mmol}$) and 4-dimethylaminopyridine (DMAP) (12 $\mathrm{mg}, 0.10 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 15 h at room temperature. The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}\left(150 \mathrm{~cm}^{3}\right)$ and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ ($5 \mathrm{~cm}^{3} \times 2$), dried over $\mathrm{M} \mathrm{gSO}_{4}$ and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(20 \mathrm{~g}$, hexane-acetone, $30: 1 \sim 15: 1$) to afford (+)-9 (501 $\mathrm{mg}, 94 \%$) as a colourless oil (Found: $\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 484.1829$. $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{7} \mathrm{Si}$ requires $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}, 484.1867$); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 3071,3048,2998,2954,2857,1960,1890,1747,1704,1589$, 1472, 1444, 1428, 1404, 1362, 1320, 1293, 1236, 1195, 1173, 1111, 1050 and 998; $\delta_{\mathrm{H}} 1.05\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{M} \mathrm{e})_{3}\right], 1.60-2.10(6 \mathrm{H}, \mathrm{m}$, $4-, 5-\mathrm{H}_{2}$ and $\mathrm{SiOCH} \mathrm{H}_{2} \mathrm{CH}_{2}$), $2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{COM} \mathrm{e}), 3.68(6 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{Me} \times 2$), $3.50-3.76\left(2 \mathrm{H}, \mathrm{br}, \mathrm{SiOCH}_{2}\right), 4.30-4.43(1 \mathrm{H}, \mathrm{br}$, $6-\mathrm{H}), 4.86-4.98$ ($1 \mathrm{H}, \mathrm{br}$ m, 2-H), 5.07 (1H, br, 3-H), 7.28-7.45 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$) and 7.52-7.70 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$); $\delta_{\mathrm{c}} 19.18$ (s), 20.92 (u), 20.99 (d), 25.05 (d), 26.79 (u), 35.65 (d), 47.97 and 48.00 (each u, due to rotamers), 51.86 (u), $53.04(u), 54.87$ (u), 61.68 and 61.71 (each d, due to rotamers), 69.07 (u), 127.63 (u), 129.58 (u), 133.76 (s), 135.53 (u), 156.44 (s), 169.94 (s) and $170.06(\mathrm{~s}) ; \mathrm{m} / \mathrm{z} 484\left(\mathrm{M}^{+}-57\right)$ and 424 (100%); $[a]_{\mathrm{D}}^{26}+4.19$ (c $1.52, \mathrm{CHCl}_{3}$).
In a similar manner, the enantiomer (-)-9 was obtained from (-)-1 in 93% yield; $[a]_{0}^{26}-4.2\left(c 1.80, \mathrm{CHCl}_{3}\right)$.

D imethyl (+)-6-[2-(tert-butyIdiphenyIsilyloxy)ethylf3(methoxymethox y) piperidine-1,2-dicarboxylate (+)-10

To a stirred solution of $(+)-9(663 \mathrm{mg}, 1.23 \mathrm{mmol})$ in $\mathrm{M} \mathrm{eOH}(5$ cm^{3}) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(102 \mathrm{mg}, 0.74 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the resulting suspension was stirred for 50 min at room temperature The reaction mixture was neutralised with 10\% aqueous acetic acid and concentrated. The residue was taken up in hot $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3} \times 5\right)$. The organic extracts were combined, dried over $\mathrm{M} \mathrm{SSO}_{4}$ and evaporated to give a colourless oil, which was used directly in the next step without further purification. To a stirred solution of the oil obtained above in $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3}\right)$ were added $\mathrm{MOMCl}\left(0.2 \mathrm{~cm}^{3}, 2.45 \mathrm{mmol}\right)$ and $\mathrm{EtPr}^{2} \mathrm{~N}\left(0.65 \mathrm{~cm}^{3}, 3.68 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was refluxed for 2 h . A fter cooling, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(150 \mathrm{~cm}^{3}\right)$, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3} \times 2\right)$, dried over MgSO_{4} and evaporated to give a pale yellow oil, which was purified by column chromatography on SiO_{2} (30 g , hexane-acetone, 40:1-30:1) to afford (+)-10 [584 mg, 88\% from (+)-9] as a colourless oil (Found: $\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 486.1963 . \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{7} \mathrm{Si}$ requires $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}, 486.1978$); $v_{\text {max }}$ (neat)/cm ${ }^{-1} 3071,2953$, 2892, 2857, 1747, 1704, 1589, 1444, 1361, 1320, 1297, 1248, 1213, 1194, 1170, 1110, 1041, 1007 and 938; $\delta_{\mathrm{H}} 1.05[9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}(\mathrm{Me})_{3}\right], 1.60-2.15\left(6 \mathrm{H}\right.$, br m, 4-, $5-\mathrm{H}_{2}$ and $\left.\mathrm{SiOCH} \mathrm{CH}_{2}\right)$, $3.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}\right.$ e), $3.60-3.74\left(2 \mathrm{H}, \mathrm{br}, \mathrm{SiOCH}_{2}\right), 3.68$ and 3.69 (each 3 H , each $\mathrm{s}, \mathrm{CO}_{2} \mathrm{Me} \times 2$), 3.80-3.90 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 4.33-4.42 ($1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{M} \mathrm{OM} \mathrm{OCH}$), 4.64 and 4.72 (each 1 H , $\left.\mathrm{ABq}, \mathrm{J} 7, \mathrm{OCH}_{2} \mathrm{O}\right), 5.00(1 \mathrm{H}, \mathrm{br}, 2-\mathrm{H}), 7.30-7.45(6 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}-\mathrm{H}$) and 7.67 (4H , app. d, J 7, Ph-H); $\delta_{\mathrm{c}} 19.18$ (s), 21.87 (d), 25.18 (d), 26.78 (u), 35.72 (d), 47.86 (u), 51.70 (u), 52.94 (u), 55.63 (u), 55.99 (u), 61.67 (d), 72.39 (u), 95.20 (d), 127.58 (u), 129.54 (u), 133.80 (s), 135.52 (u), 156.44 (s), 156.84 (s) and 171.01 (s); m/z $486\left(\mathrm{M}^{+}-57\right)$ and 488 (100%); $[a]_{0}^{26}+20.3$ ($\mathrm{c} 1.94, \mathrm{CHCl}_{3}$).

In a similar manner, the enantiomer (-)-10 was obtained from (-)-9 in 88% yield; $[a]_{0}^{26}-20.3$ (c 1.82, CHCl_{3}).

M ethyl (-)-6-[2-(tert-butyldiphenyIsilyloxy)ethyl]-2-hydroxy-methyl-3-(methoxymethoxy)piperidine-1-carboxylate (-)-11 To a stirred solution of $(+)-10(569 \mathrm{mg}, 1.05 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right.$) was added Super-H ydride (1 m solution in THF, 2.6 cm^{3}) at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 0.5 h at room temperature. To the reaction mixture was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($150 \mathrm{~cm}^{3}$), and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ (10 $\mathrm{cm}^{3} \times 1$), dried over ${\mathrm{M} \mathrm{gSO}_{4} \text { and evaporated to give a colour- }}^{\text {a }}$ less oil, which was purified by column chromatography on SiO_{2} (15 g, hexane-acetone, 30:1-10:1) to afford (-)-11 (470 mg, 87\%) as a colourless oil (Found: $\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}$, 458.2000. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N} \mathrm{O}_{6} \mathrm{Si}$ requires $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}, \quad 458.2001$); $v_{\max }$ (neat)/cm ${ }^{-1} 3463,3071,3049,2952,2891,2858,1831$, 1694, 1589, 1446, 1428, 1409, 1361, 1321, 1221, 1191, 1150, 1109, 1043, 739, 704 and 688; $\delta_{\mathrm{H}} 1.05\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{M} \mathrm{e})_{3}\right], 1.50-$ $1.83\left(6 \mathrm{H}\right.$, br, $4-, 5-\mathrm{H}_{2}$ and $\left.\mathrm{SiOCH} \mathrm{CH}_{2}\right), 2.62(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$, $3.39(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.40-3.58 (1H , br m, 6-H), 3.59-3.63 (2H, $\left.\mathrm{br} \mathrm{m}, \mathrm{SiOCH}_{2}\right)$, $3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 3.79-3.87(0.5 \mathrm{H}, \mathrm{br} \mathrm{m}$, 2-H due to rotamers), 3.97-4.07 (0.5H, br m, 2-H due to rotamers), 4.26-4.37 (1 H , br m, M OM OCH), 4.54-4.71 (1 H , br, $3-\mathrm{H}), 4.68(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 2 \mathrm{O}), 7.32-7.46(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H})$ and 7.66 (4H, app. d, J 6.5, Ph-H); $\delta_{c} 19.13$ (s), 21.25 (d), 25.90 (d), 26.79 (u), 36.69 (d), 47.33 (u), 52.84 (u), 54.60 (u), 55.71 (u), 61.85 (d), 62.66 (d), 74.93 (u), 95.01 (d), 127.65 (u), 129.64 (u), 133.63 (s), $135.53(\mathrm{u})$ and $157.95(\mathrm{~s}) ; \mathrm{m} / \mathrm{z} 458\left(\mathrm{M}^{+}-57\right)$ and 366 (100\%); $[a]_{D}^{26}-7.2\left(\mathrm{c} 1.77, \mathrm{CHCl}_{3}\right)$.
In a similar manner, the enantiomer (+)-11 was obtained from (-)-10 in 85% yield; $[a]_{D}^{26}+7.1\left(\mathrm{c} 2.26, \mathrm{CHCl}_{3}\right)$.

M ethyl (+)-6-[2-(tert-butyldiphenylsilyloxy)ethyl]-2-(1,3-dithiolan-2-yl)-3-(methox ymethoxy)piperidine-1-carboxylate (+)-12

To a stirred suspension of PCC ($170 \mathrm{mg}, 0.78 \mathrm{mmol}$) and $\mathrm{AcONa}(130 \mathrm{mg}, 1.55 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added (-)11 ($200 \mathrm{mg}, 0.388 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$, and the resulting suspension was stirred for 3 h at room temperature. Direct column chromatography of the reaction mixture on $\mathrm{SiO}_{2}(10 \mathrm{~g}$, hexane-acetone, $30: 1-20: 1$) gave the aldehyde ($185 \mathrm{mg}, 93 \%$) as a colourless paste, which was immediately used in the next step. To a stirred solution of the aldehyde obtained above (185 $\mathrm{mg}, 0.36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ were added $3 \AA$ molecular sieves, ethane-1,2-dithiol ($0.044 \mathrm{~cm}^{3}, 0.525 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(0.044 \mathrm{~cm}^{3}, 0.36 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with sat. aqueous $\mathrm{NaHCO}_{3}\left(3 \mathrm{~cm}^{3}\right)$ and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 3\right)$, and the organic layer and extracts were combined, dried over MgSO_{4} and evaporated to give a pale green oil, which was purified by column chromatography on SiO_{2} (10 g, hexane-acetone, 40:1-20:1) to afford (+)-12 (144 mg, 68\%) as a colourless paste (Found: $\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}$, 532.1664. $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{5} \mathrm{~S}_{2} \mathrm{Si}$ requires $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}, ~ 532.1647$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2931,1700,1442,1400,1304,1152,1109$, 1040, 931, 824, 738 and $703 ; \delta_{\mathrm{H}} 1.06\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{M} \mathrm{e})_{3}\right], 1.52-$ $1.74\left(5 \mathrm{H}, \mathrm{br}, 4-, 5-\mathrm{H}_{2}\right.$ and one of $\left.\mathrm{SiOCH} \mathrm{CH}_{2}\right), 2.02-2.20(1 \mathrm{H}$, br, one of $\mathrm{SiOCH} \mathrm{CH}_{2}$), 3.01-3.32 (4 H , br m, $\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), $3.40(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 3.60-3.78(2 \mathrm{H}$, br,
 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{SCHS}$), 4.68-4.82 (3H, br m, $\mathrm{OCH}_{2} \mathrm{O}$ and M OM OCH), 7.32-7.46 (6H m, Ph-H) and 7.61-7.72 (4H , m, Ph-H); $\delta_{\mathrm{c}} 19.15$ (s), 21.95 (d), 25.71 (d), 26.78 (u), 36.31 (d), 37.65 (d), 39.59 (d), 47.21 (u), 52.88 (u), 53.83 (u), 55.73 (u), 58.61 (u), 61.49 (d), 73.17 (u), 95.08 (d), 127.80 (u), 129.57 (u), 133.70 (s), 135.54 (u) and 157.41 (s); m/z $532\left(\mathrm{M}^{+}-57\right)$ and 140 (100%); $[a]_{b}^{26}+39.8\left(\mathrm{c} \mathrm{1.78}, \mathrm{CHCl}_{3}\right.$).
In a similar manner, the enantiomer (-)-12 was obtained from (+)-11 in 68% yield; $[a]_{D}^{26}-39.8$ (c $2.05, \mathrm{CHCl}_{3}$).

M ethyl 6-[2-(tert-butyldiphenyIsilyloxy)ethyl]3-(methoxy-methoxy)-2-methylpiperidine-1-carboxylate 13
To a stirred solution of $(+)-12(144 \mathrm{mg}, 0.244 \mathrm{mmol})$ in EtOH $\left(2 \mathrm{~cm}^{3}\right)$ was added freshly prepared R aney nickel ($W-4$), and the resulting suspension was refluxed for 2 h . A fter cooling, the catalyst was removed by filtration, and the filtrate was evaporated to give 13 ($116 \mathrm{mg}, 95 \%$) as an essentially pure colourless paste, which was used directly in the next step; $v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 2950, 1699, 1443, 1307, 1148, 1111, 1044, 919 and 824; $\delta_{H} 1.05$ $\left[9 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{M} \mathrm{e})_{3}\right], 1.15(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7,2-\mathrm{M} \mathrm{e}), 1.53-1.90(6 \mathrm{H}$, br m, $4-, 5-\mathrm{H}_{2}$ and $\left.\mathrm{SiOCH} \mathrm{CH}_{2}\right), 3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $3.64(3 \mathrm{H}$, s, $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 3.54-3.73 (3H , br, SiOCH ${ }_{2}$ and 6-H), 4.20-4.29 (1H, br, 2-H), 4.41-4.54 (1H, br, M OM OCH), $4.66(2 \mathrm{H}, \mathrm{br}$ s, $\mathrm{OCH}_{2} \mathrm{O}$), 7.31-7.43 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$) and 7.59-7.72 (4H, m, Ph-H); m/z $442\left(\mathrm{M}^{+}-57\right), 135(100 \%)$ [Calc. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{Si}$ $\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 442.2049$. Found: $\left.\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 442.2060\right]$.

M ethyl (+)-6-(2-hydrox yethyl)-3-(methoxymethoxy)-2-methyl-piperidine-1-carboxylate (+)-14

To a stirred solution of $13(116 \mathrm{mg}, 0.232 \mathrm{mmol})$ in THF (3 cm^{3}) was added $\mathrm{Bu}^{\mathrm{n}}{ }_{4} \mathrm{NF}$ (1 m solution in THF, $0.25 \mathrm{~cm}^{3}, 0.25$ mmol) at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 30 min . The reaction was quenched with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(1 \mathrm{~cm}^{3}\right)$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 4\right)$, and the organic extracts were combined, dried over $\mathrm{M} \mathrm{SOO}_{4}$ and evaporated to give a colourless oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(5 \mathrm{~g}$, hexane-acetone, 15:1-10:1) to afford (+)-14 ($42 \mathrm{mg}, 85 \%$) as a colourless oil (Found: M^{+}, 261.1599. $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires $\mathrm{M}, 261.1576)$; $v_{\max }$ (neat)/cm ${ }^{-1} 3447,2949,1670,1448,1406$, 1353, 1314, 1147, 1087 and 1041; $\delta_{\mathrm{H}} 1.14$ (3H, d, J 7, 2-M e), 1.55-1.97 (6H, br m, 4-, 5- H_{2} and $\mathrm{HOCH}_{2} \mathrm{CH}_{2}$), $3.39(3 \mathrm{H}, \mathrm{s}$, OM e), 3.41-3.52 (1H, br, OH), 3.53-3.80 (3H, br m, 6-H and $\mathrm{HOCH} \mathrm{H}_{2}$), $3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 4.26-4.33(1H, br, 2-H), 4.464.55 ($1 \mathrm{H}, \mathrm{br}, \mathrm{M} \mathrm{OMOCH}$) and $4.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{c}} 14.45$ (u), 20.77 (d), 28.09 (d), 37.65 (d), 46.14 (u), 49.25 (u), 53.13 (u), 55.55 (u), 58.97 (d), 74.54 (u), 95.05 (d) and 157.50 (s); m/z 262 $\left(\mathrm{M}^{+}+1\right), 261\left(\mathrm{M}^{+}\right), 246\left(\mathrm{M}^{+}-15\right)$ and $84(100 \%)$; $[a]_{0}^{26}+30.5$ (c $1.00, \mathrm{CHCl}_{3}$).
In a similar manner, the enantiomer (-)-14 was obtained from the enantiomer of 13 in 88% yield; $[a]_{b}^{26}-30.7$ (c 0.71, CHCl_{3}).

M ethyl (+)-1-methoxycarbonyl-5-(methoxymethoxy)-6-methylpiperidine-2-ethanoate (+)-15

To a stirred solution of $(+)-15(42 \mathrm{mg}, 0.197 \mathrm{mmol})$ in N, N dimethylformamide ($1 \mathrm{~cm}^{3}$) was added PDC ($445 \mathrm{mg}, 1.182$ mmol), and the resulting suspension was stirred for 18 h at room temperature. To the reaction mixture were added $\mathrm{H}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ and 10% aqueous $\mathrm{HCl}\left(0.5 \mathrm{~cm}^{3}\right)$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3} \times 5\right)$. The organic extracts were combined, dried over $\mathrm{M} \mathrm{SSO}_{4}$ and evaporated to give a pale yellow oil. To a solution of the oil obtained above in $\mathrm{Et}_{2} \mathrm{O}$ (10 cm^{3}) was added an ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 12 h at room temperature. The solvent was removed to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(5 \mathrm{~g}$, hexane-acetone, 10:1) to afford (+)-15 ($38 \mathrm{mg}, 66 \%$) as a colourless oil (Found: M^{+}, 289.1511. $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{6}$ requires M , 289.1524); $v_{\text {max }}$ (neat)/ cm^{-1} 2989, 2951, 2824, 1738, 1698, 1444, 1319, 1300, 1081 and 1043; $\delta_{\mathrm{H}} 1.16$ (3H, d, J $7,6-\mathrm{Me}$), $1.70-1.81(4 \mathrm{H}, \mathrm{br}, 3-$ and $\left.4-\mathrm{H}_{2}\right), 2.51\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15\right.$ and 4.5 , one of $\left.\mathrm{MeO} \mathrm{CCH}_{2}\right)$, $2.65\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15\right.$ and 10 , one of $\left.\mathrm{M} \mathrm{eO}_{2} \mathrm{CCH}_{2}\right), 3.38(3 \mathrm{H}, \mathrm{s}$, OM e), 3.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$ e), 3.71 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 4.43-4.52 ($2 \mathrm{H}, \mathrm{m}, 2$ - and $6-\mathrm{H}$), 4.54-4.63 ($1 \mathrm{H}, \mathrm{br}, \mathrm{MOMOCH}$) and 4.67 ($2 \mathrm{H}, \mathrm{s}, \mathrm{MeOCH}{ }_{2} \mathrm{O}$); $\delta_{\mathrm{c}} 14.35$ (u), 20.27 (d), 26.71 (d), 38.77 (d), 46.48 (u), 49.11 (u), $51.64(u), 52.75$ (u), 55.47 (u), 74.15 (u), 94.91 (d), 156.05 (s) and 171.62 (s); m/z 290 $\left(\mathrm{M}^{+}+1\right), 289\left(\mathrm{M}^{+}\right)$and 154 (100%); $[a]_{0}^{26}+2.81$ (c 0.88 , CHCl_{3}).

M ethyl 1-methoxycarbonyl-6-methyl-1,2,3,6-tetrahydropyridine-

 2-ethanoate 16To a stirred solution of $(+)-15(38 \mathrm{mg}, 0.130 \mathrm{mmol})$ in MeOH $\left(1 \mathrm{~cm}^{3}\right)$ was added conc. aqueous $\mathrm{HCl}\left(1\right.$ drop) at $0^{\circ} \mathrm{C}$, and the reaction mixture was refluxed for 1 h . A fter cooling, the mixture was neutralised with sat. aqueous NaHCO_{3} and the volatiles were removed. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{cm}^{3} \times 3$), and the organic extracts were combined, dried over $\mathrm{M} \mathrm{SSO}_{4}$ and evaporated to afford the alcohol, which was essentially pure and used directly in the next step. To a stirred solution of the alcohol obtained above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.5 \mathrm{~cm}^{3}\right)$ were added $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}\left(0.03 \mathrm{~cm}^{3}, 0.39 \mathrm{mmol}\right)$ and pyridine (0.053 $\mathrm{cm}^{3}, 0.65 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 14 h at room temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 $\left.\mathrm{cm}^{3}\right)$ and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3} \times 1\right)$, dried over $\mathrm{M} \mathrm{SSO}_{4}$ and evaporated to give the methanesulfonate as a colourless oil, which was used in the next step without further purification. To a stirred solution of the methanesulfonate obtained above in toluene ($0.5 \mathrm{~cm}^{3}$) was added D BU $\left(0.2 \mathrm{~cm}^{3}, 1.3 \mathrm{mmol}\right)$, and the reaction mixture was refluxed for 36 h . A fter cooling, the mixture was diluted with benzene (50 $\left.\mathrm{cm}^{3}\right)$, and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}\left(1 \mathrm{~cm}^{3} \times 2\right)$, 10% aqueous $\mathrm{HCl}\left(1 \mathrm{~cm}^{3} \times 1\right)$ and $\mathrm{H}_{2} \mathrm{O}\left(1 \mathrm{~cm}^{3} \times 2\right)$, dried over $\mathrm{MgSO}{ }_{4}$ and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(5 \mathrm{~g}$, hexaneacetone, $50: 1-40: 1$) to afford 16 [14.2 $\mathrm{mg}, 48 \%$ from (+)-15] as a colourless oil (Found: M^{+}, 227.1173. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires M , 227.1157); $\delta_{\mathrm{H}} 1.25$ (3H, d, J 7, 6-M e), 2.04 (1H , app. dd, J 17.5 and 6, 3-H), 2.40 (1 H , app. br d, J 17.5, 3-H), 2.52 (1 H , dd, J 15.5 and 7 , one of $\mathrm{M} \mathrm{eO}_{2} \mathrm{CCH}_{2}$), 2.63 (1 H , dd, J 15.5 and 9 , one of $\mathrm{M} \mathrm{eO}_{2} \mathrm{CCH}_{2}$), $3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, 4.32-4.44 (1H, br, 2-H), 4.84-4.97 (1H, br, 6-H) and 5.58-5.75 $\left(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{OCH}_{2} \mathrm{O}\right) ; \mathrm{m} / \mathrm{z} 228\left(\mathrm{M}^{+}+1\right)$ and $227\left(\mathrm{M}^{+}\right)$.

M ethyl (-)-1-methoxycarbonyl-6-methylpiperidine-2-ethanoate

 (-)-17To a stirred solution of $\mathbf{1 6}(14 \mathrm{mg}, 0.0624 \mathrm{mmol})$ in $\mathrm{M} \mathrm{eOH}(0.5$ cm^{3}) was added $5 \% \mathrm{Pd}-\mathrm{C}(10 \mathrm{mg}$), and the suspension was stirred for 5 h at room temperature under a hydrogen atmosphere. A fter filtration of the suspension through a Celite pad, the catalyst on the pad was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3} \times 5\right)$. The filtrate and washings were combined and evaporated to give an oil, which was purified by column chromatography on SiO_{2} (1 g, hexane-acetone, $60: 1$) to afford (-)-17 ($11 \mathrm{mg}, 80 \%$) as a colourless oil. The spectral data (${ }^{1}$ H NMR, IR and mass) of the synthetic sample of $(-)-17$ were completely identical with those for the authentic specimen; ${ }^{17}[a]_{0}^{26}-40.0$ (c 0.50 , CHCl_{3}) $\left\{1 \mathrm{lit} .{ }^{17}[a]_{0}^{26}-38.9\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right)\right\}$.

M ethyl 6-(dodeca-2,11-dienyl)-3-(methoxymethoxy)-2-methyl-piperidine-1-carbox ylate 18

To a stirred solution of $(\mathrm{COCl})_{2}\left(0.072 \mathrm{~cm}^{3}, 0.85 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added dimethyl sulfoxide (DMSO) (0.12 $\mathrm{cm}^{3}, 1.69 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . To the mixture was added a solution of $(+)-14(100 \mathrm{mg}$, 0.38 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . Triethylamine $\left(0.36 \mathrm{~cm}^{3}\right.$, 2.60 mmol) was added to the mixture at $-78^{\circ} \mathrm{C}$, and the resulting mixture was warmed to $0^{\circ} \mathrm{C}$ for 1 h and then diluted with $\mathrm{H}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$ and $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3} \times 4\right)$, and the organic extracts were combined, dried over $\mathrm{M}_{\mathrm{gSO}}^{4}$ and evaporated to give the aldehyde, a pale yellow oil, which was used directly in the next step. To a stirred suspension of $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{P}^{+} \mathrm{Ph}_{3} \mathrm{Br}^{-}(400 \mathrm{mg}$, 0.84 mmol) in THF ($5 \mathrm{~cm}^{3}$) was added BunLi (10% in hexane, $0.46 \mathrm{~cm}^{3}, 0.72 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the resulting orange solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min . To the orange solution was added a solution of the aldehyde obtained above in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the suspension was stirred at room temperature for 2 h. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ and the aque-
ous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 4\right)$. The organic extracts were combined, dried over $\mathrm{M} \mathrm{gSO}_{4}$ and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(10 \mathrm{~g}$, hexane-acetone, 70:1-60:1) to afford 18 [126 mg, 86\% from (+)-14] as a pale yellow oil (Found: M^{+}, 381.2898. $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NO}_{4}$ requires M , 381.2877); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ 3075, 2927, 2854, 1699, 1654, 1640, 1443, 1401, 1376, 1350, 1319, 1281, 1245, 1218, 1189, 1146, 1108, 1078, 1043, 1022, 990, 917 and 774 ; $\delta_{\mathrm{H}} 1.17$ (3H , d, J 7, 2-M e), 1.20-1.42 ($10 \mathrm{H}, \mathrm{br}, \mathrm{C}_{6}-$ sidechain- CH_{2}), 1.48-1.79 (4H, br m, 4- and 5- H_{2}), 1.94-2.07 ($4 \mathrm{H}, \mathrm{br} \mathrm{m},=\mathrm{CHCH}_{2} \times 2$), 2.10-2.25 (1 H , br m, one of $6-\mathrm{CH}_{2}$), 2.33-2.47 (1H , br m, one of 6-CH 2), 3.37 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.60$3.71\left[4 \mathrm{H}, \mathrm{br} \mathrm{m}\right.$, including $\delta 3.69(3 \mathrm{H}, \mathrm{s}), 6-\mathrm{H}$ and $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$], 4.014.12 ($1 \mathrm{H}, \mathrm{br}, 2-\mathrm{H}$), 4.42-4.53 (1H, br, M OM OCH), 4.66 ($2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 4.88-5.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right), 5.24-5.34(1 \mathrm{H}, \mathrm{br} \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}), 5.39-5.50(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and $5.80(1 \mathrm{H}, \mathrm{ddt}$, $\mathrm{J} 17,10$ and $\left.6.5, \mathrm{CH}_{2}=\mathrm{CH}\right) ; \mathrm{m} / \mathrm{z} 382\left(\mathrm{M}^{+}+1\right), 381\left(\mathrm{M}^{+}\right), 320$ ($\mathrm{M}^{+}-61$) and 217 (100%).

M ethyl 3-(methoxymethoxy)-2-methyl-6-(11-oxododec-2-enyl)-piperidine-1-carboxylate 19
To a stirred solution of $18(25 \mathrm{mg}, 0.066 \mathrm{mmol})$ in DM F (0.6 cm^{3}) and $\mathrm{H}_{2} \mathrm{O}\left(0.2 \mathrm{~cm}^{3}\right)$ were added $\mathrm{CuCl}(8 \mathrm{mg}, 0.079 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}(2.5 \mathrm{mg}, 0.013 \mathrm{mmol})$ at room temperature, and the resulting suspension was stirred at room temperature for 11 h under an oxygen atmosphere. The reaction was quenched with sat. aqueous $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3}\right)$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 4\right)$. The organic extracts were combined, dried over $\mathrm{M}_{\mathrm{gSO}}^{4}$ and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(5 \mathrm{~g}$, hexane-acetone, $20: 1$) to afford 19 ($18.3 \mathrm{mg}, 70 \%$) as a colourless oil (Found: M^{+}, 397.2801. $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{NO}_{5}$ requires M , 397.2826); $v_{\text {max }}$ (neat)/cm ${ }^{-1}$ 2926, 2854, 1699, 1654, 1560, 1543, 1508, 1443, 1404, 1351, 1319, 1146, 1107, 1080 and 1042; $\delta_{\text {H }}$ 1.18 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7,2-\mathrm{M} \mathrm{e}$), 1.22-1.40 (8 H, br s, C_{6}-sidechain- CH_{2}), 1.50-1.77 (6 H, br m, C_{6}-sidechain- $\mathrm{CH}_{2}, 4$ - and 5- H_{2}), 1.97-2.26 [$6 \mathrm{H}, \mathrm{br} \mathrm{m}$, including $\delta 2.13(3 \mathrm{H}, \mathrm{s}),=\mathrm{CHCH}_{2}$, one of $\mathrm{C}(\mathrm{O})$ $\mathrm{CH}=\mathrm{CHCH}_{2}$ and $\mathrm{C}(\mathrm{O}) \mathrm{M}$ e], $2.41\left[3 \mathrm{H}\right.$, app. t, J $7.5,6-\mathrm{CH}_{2}$ and one of $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}$], $3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.62-3.73[4 \mathrm{H}$, br m , including $\delta 3.70\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}\right.$ and $\mathrm{CO}_{2} \mathrm{Me}$)], $4.03-4.14$ ($1 \mathrm{H}, \mathrm{br}, 2-\mathrm{H}$) , 4.40-4.54 ($1 \mathrm{H}, \mathrm{br}, \mathrm{M} \mathrm{OM} \mathrm{OCH}$), $4.67(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 5.22-5.34(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and 5.39-5.49 (1H, br m, $\mathrm{CH}=\mathrm{CH}$); m/z $398\left(\mathrm{M}^{+}+1\right), 397\left(\mathrm{M}^{+}\right)$and 217 (100\%).

M ethyl (+)-3-(methoxymethoxy)-2-methyl-6-(11-oxododecyl)-piperidine-1-carboxylate (+)-20

To a stirred solution of $19(76 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{M} \mathrm{eOH}\left(3 \mathrm{~cm}^{3}\right)$ was added 5% Pd-C (15 mg), and the suspension was stirred at room temperature for 7 h under a hydrogen atmosphere. The catalyst was removed by filtration through a Celite pad, and the catalyst was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 5\right)$. The filtrate and washings were combined and evaporated to give a colourless oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(10$ g , hexane-acetone, 20:1) to afford (+)-20 ($70 \mathrm{mg}, 92 \%$) as a colourless oil (Found: M^{+}, 399.3001. $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{~N} \mathrm{O}_{5}$ requires M , 399.2985); $v_{\text {max }}$ (neat)/cm ${ }^{-1}$ 2925, 2853, 1698, 1560, 1444, 1406, 1352, 1308, 1246, 1145, 1094 and 1043; $\delta_{\mathrm{H}} 1.14$ (3H, d, J 7, 2-M e), 1.15-1.27 (15 H, br s, C_{6}-sidechain- CH_{2}), 1.38-1.70 (7H, br m, C_{6}-sidechain- $\mathrm{CH}_{2}, 4$ - and $5-\mathrm{H}_{2}$), $2.12[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{M} \mathrm{e]}$, $2.40\left[2 \mathrm{H}\right.$, app. t, J $\left.7, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right], 3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 3.55-3.68$ [$4 \mathrm{H}, \mathrm{br}$ m, including $\delta 3.68(3 \mathrm{H}, \mathrm{s}), 6-\mathrm{H}$ and $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$], 3.95-4.08 ($1 \mathrm{H}, \mathrm{br}, 2-\mathrm{H}$), 4.36-4.48 ($1 \mathrm{H}, \mathrm{br}, \mathrm{M} \mathrm{OM} \mathrm{OCH}$) and 4.66 ($2 \mathrm{H}, \mathrm{s}$, $\mathrm{OCH}_{2} \mathrm{O}$); $\delta_{\mathrm{c}} 14.24$ and 14.28 (each u, due to rotamers), 20.54 (d), 23.74 (d), 26.29 (d), 26.36 (d), 27.28 (d), 29.05 (d), 29.26 (d), 29.30 (d), 29.41 (d), 29.67 (d), 29.73 ((), 34.67 (d), 43.67 (d), $49.07(u), 49.95(u), 52.36$ and 52.39 (each u, due to rotamers), 55.32 and 55.37 (each u, due to rotamers), 74.61 (u), 94.78 (d), 156.39 (s) and $209.11(\mathrm{~s}) ; \mathrm{m} / \mathrm{z} 400\left(\mathrm{M}^{+}+1\right), 399\left(\mathrm{M}^{+}\right)$and 154 (100%); $[a]_{0}^{26}+22.2\left(\mathrm{c} 0.57, \mathrm{CHCl}_{3}\right)$.

(-)-C assine

To a stirred solution of $(+)-20(60 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5$ cm^{3}) was added $\mathrm{Me} \mathrm{e}_{3} \mathrm{Sil}\left(0.1 \mathrm{~cm}^{3}, 0.66 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was refluxed for 24 h . A fter cooling, the reaction was quenched with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in sat. aqueous NaHCO_{3} $\left(10 \mathrm{~cm}^{3}\right)$ and the aqueous layer was extracted with $\mathrm{CHCl}_{3}(10$ $\left.\mathrm{cm}^{3} \times 5\right)$. The organic layer and extracts were combined, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}\left(20 \mathrm{~g}, \mathrm{CHCl}_{3}-\right.$ EtOH , 100:1) to afford (- -cassine ($28 \mathrm{mg}, 65 \%$) as a colourless solid, $\mathrm{mp} 55-57^{\circ} \mathrm{C}$ (lit., ${ }^{18 \mathrm{Ba}} \mathrm{mp} 57-58.5^{\circ} \mathrm{C}$) (Found: M^{+}, 297.2644. $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{~N} \mathrm{O}_{2}$ requires $\mathrm{M}, 297.2666$); $v_{\text {max }}\left(\mathrm{CCl}_{4}\right) / \mathrm{cm}^{-1}$ $3550,3520,2950,2870,1722,1515,1440,1385,1357,1320$, 1164 and $968 ; \delta_{\mathrm{H}} 1.10$ (3H , d, J 6.5, 2-M e), 1.16-1.40 (16 H , br s, C_{6}-sidechain- CH_{2}), 1.45-1.64 ($5 \mathrm{H}, \mathrm{br} \mathrm{m}$, one of C_{6}-sidechain$\mathrm{CH}_{2}, 4$ - and $\left.5-\mathrm{H}_{2}\right), 1.90\left(1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 14\right.$, one of C_{6}-sidechain$\left.\mathrm{CH}_{2}\right), 2.13\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{M} \mathrm{e}\right.$], $2.41\left[2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right], 2.47-$ $2.60(1 \mathrm{H}, \mathrm{br}, 6-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{qd}, \mathrm{j} 6.5$ and $1.5,2-\mathrm{H})$ and 3.54 (1H , br s, 3-H); $\delta_{\mathrm{c}} 18.62$ (u), 23.84 (d), 25.77 (d), 26.03 (d), 29.14 (d), 29.34 (d), 29.40 (d), 29.47 (d), 29.51 (d), 29.76 (u), 32.03 (d), 36.90 (d), 43.78 (d), 55.81 (u), $57.22(\mathrm{u}), 67.97$ (u) and 209.31 (s); m/z $298\left(\mathrm{M}^{+}+1\right), 297\left(\mathrm{M}^{+}\right), 240\left(\mathrm{M}^{+}-57\right)$ and 69 (100%); $[a]_{D}^{26}-0.7$ (c 0.59, EtOH) \{lit., ${ }^{18 a}[a]_{D}^{25}-0.6$ (c 8.0 , EtOH)\}.

M ethyl 3-(methoxymethoxy)-2-methyl-6-(tetradeca-2,13-dienyl)piperidine-1-carboxylate 21

To a stirred solution of $(\mathrm{COCl})_{2}\left(0.072 \mathrm{~cm}^{3}, 0.85 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added DM SO ($0.12 \mathrm{~cm}^{3}, 1.69 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . To the mixture was added a solution of $(-)-14(100 \mathrm{mg}, 0.38 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$, and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min . Triethylamine ($0.36 \mathrm{~cm}^{3}, 2.60 \mathrm{mmol}$) was then added at $-78^{\circ} \mathrm{C}$, and the resulting mixture was warmed to $0^{\circ} \mathrm{C}$ for 1 h , and then diluted with $\mathrm{H}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$ and $\mathrm{Et}_{2} \mathrm{O}(50$ cm^{3}). The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3} \times 4\right)$. The organic layer and extracts were combined, dried over $\mathrm{M} \mathrm{SSO}_{4}$ and evaporated to give a pale yellow oil, which was used directly in the next step. To a stirred suspension of $\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{9} \mathrm{P}^{+} \mathrm{Ph}_{3} \mathrm{Br}^{-}(487 \mathrm{mg}$, 0.96 mmol) in THF ($5 \mathrm{~cm}^{3}$) was added BunLi (10% in hexane, $0.54 \mathrm{~cm}^{3}, 0.84 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the resulting orange solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min . To the orange solution was added a solution of the crude aldehyde obtained above in THF ($5 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, and the suspension was stirred at room temperature for 2 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 4\right)$. The organic layer and extracts were combined, dried over $\mathrm{M} \mathrm{gSO}_{4}$ and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(10 \mathrm{~g}$, hexane-acetone, $70: 1-60: 1)$ to afford 21 (120 mg , 77%) as a pale yellow oil (Found: $\mathrm{M}^{+}, 409.3204 . \mathrm{C}_{24} \mathrm{H}_{43} \mathrm{NO}_{4}$ requires $M, 409.3192$); $v_{\text {max }}\left(\right.$ neat $/ / \mathrm{cm}^{-1} 3070,2926,2853$, 1700, 1654, 1640, 1443, 1401, 1319, 1147, 1108, 1079 and 1043; $\delta_{\mathrm{H}} 1.18(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7,2-\mathrm{M} \mathrm{e}), 1.20-1.43$ (14H, br, C 6^{-} sidechain- CH_{2}), 1.50-1.81 ($4 \mathrm{H}, \mathrm{br} \mathrm{m}, 4$ - and $5-\mathrm{H}_{2}$), 1.92-2.09 ($4 \mathrm{H}, \mathrm{br} \mathrm{m},=\mathrm{CHCH}_{2} \times 2$), 2.10-2.26 (1 H , br m, one of 6 $\left.\mathrm{CH}_{2}\right), 2.36-2.52\left(1 \mathrm{H}, \mathrm{br} \mathrm{m}\right.$, one of $\left.6-\mathrm{CH}_{2}\right), 3.38(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OM} \mathrm{e})$, 3.61-3.73 [4H , br m, including $\delta 3.70(3 \mathrm{H}, \mathrm{s}), 6-\mathrm{H}$ and $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$, $4.01-4.12(1 \mathrm{H}, \quad \mathrm{br}, 2-\mathrm{H}), 4.42-4.55(1 \mathrm{H}, \mathrm{br}$, $\mathrm{MOMOCH}), 4.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.90-5.05(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 5.24-5.34(1 \mathrm{H}, \mathrm{br} m, \mathrm{CH}=\mathrm{CH}), 5.40-5.51(1 \mathrm{H}$, br $\mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and $5.81\left(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 17,10\right.$ and $\left.6.5, \mathrm{CH}_{2}=\mathrm{CH}\right)$; $\mathrm{m} / \mathrm{z} 410\left(\mathrm{M}^{+}+1\right), 409\left(\mathrm{M}^{+}\right), 348\left(\mathrm{M}^{+}-61\right)$ and $55(100 \%)$.

M ethyl 3-(methoxymethoxy)-2-methyl-6-(13-oxotetradec-2enyl) piperidine-1-carbox ylate 22

To a stirred solution of $21(110 \mathrm{mg}, 0.27 \mathrm{mmol})$ in DM F $\left(3 \mathrm{~cm}^{3}\right)$ and $\mathrm{H}_{2} \mathrm{O}\left(1 \mathrm{~cm}^{3}\right)$ were added $\mathrm{CuCl}(32 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}(10 \mathrm{mg}, 0.05 \mathrm{mmol})$ at room temperature and the result-
ing suspension was stirred at room temperature for 16 h under an oxygen atmosphere. The reaction was quenched with sat. aqueous $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 4\right)$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layer was dried over $\mathrm{M}_{\mathrm{gSO}}^{4}$ and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(10 \mathrm{~g}$, hexane-acetone, 20:1) to afford $\mathbf{2 2}(90 \mathrm{mg}, 75 \%)$ as a colourless oil (Found: $\mathrm{M}^{+}, 425.3093 . \mathrm{C}_{24} \mathrm{H}_{43} \mathrm{NO}_{5}$ requires $\mathrm{M}, 425.3140$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 2926,2854,1699,1654,1560,1543,1508,1443$, 1404, 1351, 1319, 1146, 1107, 1080 and 1042; $\delta_{\mathrm{H}} 1.18$ (3H , d, J 7, 2-M e), 1.22-1.40 (15 H , br s, C_{6}-sidechain- $\mathrm{CH}_{2}, 4$ - and $5-\mathrm{H}$), 1.66-1.79 (3H , br m, C C_{6}-sidechain- CH_{2}), 1.97-2.09 (2H , br m, $\left.=\mathrm{CHCH}_{2}\right), 2.11-2.26[4 \mathrm{H}, \mathrm{br}$ m, including $\delta 2.13(3 \mathrm{H}$, s$)$, one of $6-\mathrm{CH}_{2}$ and $\mathrm{C}(\mathrm{O}) \mathrm{Me}$], $2.41\left[3 \mathrm{H}\right.$, app. t, J 7.5, one of $6-\mathrm{CH}_{2}$ and $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}$], $3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e})$, 3.62-3.77 [4H, br m, including δ $3.70(3 \mathrm{H}, \mathrm{s}), 6-\mathrm{H}$ and $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$], 4.03-4.14 (1H, br, 2-H), 4.45$4.54(1 \mathrm{H}, \mathrm{br}, \mathrm{M} \mathrm{OM} \mathrm{OCH}), 4.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.27-5.36(1 \mathrm{H}$, br m, $\mathrm{CH}=\mathrm{CH}$) and $5.40-5.51(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{CH}=\mathrm{CH})$; m/z 426 $\left(M^{+}+1\right), 425\left(M^{+}\right)$and 154 (100%).

M ethyl (-)-6-(13-oxotetradecyl)-3-(methox ymethoxy)-2-methylpiperidine-1-carboxylate (-)-23

To a stirred solution of $22(80 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{M} \mathrm{eOH}\left(3 \mathrm{~cm}^{3}\right)$ was added 5% Pd-C (10 mg) and the suspension was stirred at room temperature for 7 h under a hydrogen atmosphere. The catalyst was removed by filtration through a Celite pad, and the catalyst was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 5\right)$. The filtrate and washings were combined and evaporated to give a colourless oil, which was purified by column chromatography on SiO_{2} (10 g , hexane-acetone, $20: 1$) to afford (-)-23 ($78 \mathrm{mg}, 97 \%$) as a colourless oil (Found: $\mathrm{M}^{+}, 427.3291 . \mathrm{C}_{24} \mathrm{H}_{45} \mathrm{~N} \mathrm{O}_{5}$ requires M , 427.3295); $v_{\max }$ (neat)/cm ${ }^{-1} 2925,2853,1698,1560,1444,1406$, $1352,1308,1246,1145,1094$ and 1043 ; $\delta_{\mathrm{H}} 1.12$ (3H, d, J 7 , 2-M e), 1.15-1.31 (19H, br s, C_{6}-sidechain- CH_{2}), 1.40-1.74 ($7 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{C}_{6}$-sidechain- $\mathrm{CH}_{2}, 4$ - and $5-\mathrm{H}_{2}$), $2.09[3 \mathrm{H}, \mathrm{s}$, $\mathrm{C}(\mathrm{O}) \mathrm{M} \mathrm{e}$], $2.38\left[2 \mathrm{H}\right.$, app. $\mathrm{t}, \mathrm{J} 7, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}$], $3.34(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}$), 3.55-3.68 [4H, br m, including $\delta 3.65(3 \mathrm{H}, \mathrm{s}), 6-\mathrm{H}$ and $\mathrm{CO}_{2} \mathrm{M}$ e], 3.97-4.10 (1H, br, 2-H), 4.39-4.51 (1H, br, $\mathrm{MOMOCH})$ and $4.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right) ; \delta_{\mathrm{c}} 14.27(\mathrm{u}), 20.54$ (d), 23.75 (d), 26.27 (d), 27.31 (d), 29.06 (d), 29.15 (d), 29.28 (d), 29.34 (d), 29.47 (d), 29.73 (u), 34.67 (d), 43.70 (d), 49.05 (u), $49.95(\mathrm{u}), 52.40(\mathrm{u}), 55.36$ (u), 74.59 (u), 94.77 (d), 156.42 (s) and $209.25(\mathrm{~s}) ; \mathrm{m} / \mathrm{z} 428\left(\mathrm{M}^{+}+1\right), 427\left(\mathrm{M}^{+}\right)$and 102 (100\%); $[a]_{D}^{26}-19.4$ (c 3.87, CHCl_{3}).

(+)-Spectaline

To a stirred solution of $(-)-23(70 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5$ cm^{3}) was added $\mathrm{M}_{3} \mathrm{Sil}\left(0.1 \mathrm{~cm}^{3}, 0.66 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was refluxed for 23 h . A fter cooling, the reaction was quenched with $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in sat. aqueous NaHCO_{3} $\left(10 \mathrm{~cm}^{3}\right)$ and the aqueous layer was extracted with $\mathrm{CHCl}_{3}(10$ $\mathrm{cm}^{3} \times 5$). The organic layer and extracts were combined, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}\left(20 \mathrm{~g}, \mathrm{CHCl}_{3}-\right.$ EtOH, $100: 1$) to afford (+)-spectaline ($38 \mathrm{mg}, 70 \%$) as a colourless solid, $\mathrm{mp} 59-61^{\circ} \mathrm{C}$, lit., ${ }^{7} \mathrm{mp} 118{ }^{\circ} \mathrm{C}$ for the (-)enantiomer (Found: M^{+}, 325.2991. $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{NO}_{2}$ requires M , $325.2979) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3323,2918,2850,1709,1524,1466$, $1436,1372,1261,1225,1210,1164,1078,1009$ and $995 ; \delta_{\mathrm{H}} 1.08$ (3H, d, J 6.5, 2-M e), 1.20-1.35 (21H, br, C_{6}-sidechain- CH_{2}), 1.42-1.58 ($4 \mathrm{H}, \mathrm{br}$ m, 4-and 5- H_{2}), 1.85-1.90 ($1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{OH}$), $2.12\left[3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{M}\right.$ e], 2.40 [$\left.2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5 \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}\right], 2.49-2.54$ ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), $2.73(1 \mathrm{H}, \mathrm{qd}, \mathrm{j} 7$ and $1,2-\mathrm{H}$) and $3.52(1 \mathrm{H}, \mathrm{br}$ s, $3-\mathrm{H}) ; \delta_{\mathrm{c}} 18.73$ (u), 23.81 (d), 25.78 (d), 26.19 (d), 28.38 (d), 29.13 (d), 29.36 (d), 29.42 (d), 29.49 (d), 29.54 (d), 29.57 (d), 29.61 (d), 29.75 (d), 29.77 (d), 29.83 (u), 32.05 (d), 37.05 (d), 43.79 (d), 55.72 (u), 57.15 (u), 68.01 (u) and 209.47 (s); m/z 326 $\left(\mathrm{M}^{+}+1\right), 325\left(\mathrm{M}^{+}\right)$and $115(100 \%) ;[a]_{0}^{26}+9.0\left(\mathrm{c} 1.3, \mathrm{CHCl}_{3}\right)$ $\left\{\right.$ lit., ${ }^{19}[a]_{D}^{25}+8.0$ (c $0.27, \mathrm{CHCl}_{3}$); lit., ${ }^{5 c}[a]_{D}^{25}-8.2$ (c 0.32 , CHCl_{3}) for the (-)-enantiomer\}.

Acknowledgements

We are grateful to A mano Pharmaceutical Co., Ltd. for the generous gift of lipase preparations. We acknowledge partial financial support from the M inistry of Education, Sciences and Culture, the Japanese Government [Scientific Research (\# 06772065)].

References

1 Part 20: T. M omose, M. Toshima, S. Seki, Y. K oike, N. Toyooka and Y. Hirai, J. Chem. Soc. Perkin Trans. 1, 1997, 1315; Part 19: T. M omose, M. Toshima, N. Toyooka, Y. H irai and C. H. Eugster, J. C hem. Soc., Perkin Trans. 1, 1997, 1307.

2 C.-L. J. Wang and M. A. Wuorola, Org. Prep. Proc. Int., 1992, 24, 585.

3 J. W. Daly, H. M. Garraffo and T. F. Spande, in The Alkaloids, ed. A. Brossi, A cademic Press, N ew York, 1993, vol. 43, pp. 185-288.

4 (a) H. Takahata and T. Momose, in The Alkaloids, ed. G. A. Cordell, A cademic Press, San Diego, 1993, vol. 44, pp. 189-256; (b) J. P. M ichael, N at. Prod. Rep., 1995, 12, 535.

5 (a) G. M. Strunz and J. A. Findley, in The Alkaloids, ed. A. Brossi, A cademic Press, N ew York, 1985, vol. 26, pp. 89-183; (b) A . M . A guinaldo and R . W. Read, P hytochemistry, 1990, 29, 2309; (c) V. da S. Bolzani, A. A. L. Gunatilaka and D. G. I. K ingston, Tetrahedron, 1995, 51, 5929.
6 M. N atsume, Y uki Gousei K agaku K yokai shi (J. Synth. Org. Chem. J pn.), 1986, 44, 326 and references cited therein.
7 M . Paterne and E. Brown, J. Chem. R es., 1985, 278.

8 A. B. Holmes, J. Thompson, A. J. G. Baxter and J. Dixon, J. Chem. Soc., C hem. Commun., 1985, 37.
9 G. R. Cook, L. G. Beholz and J. R. Stille, J. Org. Chem., 1994, 59, 3575.

10 M . A . Ciufolini, C. W. Hermann, K . H. Whitmire and N. E. Byrne, J. A m. C hem. Soc., 1989, 111, 3473.

11 E. A kiyama and M . H irama, Synlett, 1996, 100.
12 K . Tadano, K . Takao, Y. N igawara, E. Nishio, I. Takagi, K . M aeda and S. Ogawa, Synlett, 1993, 565; K. Takao, Y. N igawara, E. N ishio, I. Takagi, K . M aeda, K . Tadano and S. Ogawa, Tetrahedron, 1994, 50, 5681.
13 Y. Yuasa, J. A ndo and S. Shibuya, Tetrahedron: A symmetry, 1995, 6, 1525; J. C hem. Soc., Perkin Trans. 1, 1996, 793.
14 T. Kiguchi, M. Shirakawa, I. Ninomiya and T. Naito, Chem. P harm. Bull., 1996, 44, 1282.
15 For preliminary accounts, see: T. M omose, N. Toyooka and M. Jin, Tetrahedron Lett., 1992, 33, 5389; T. M omose and N. Toyooka, Tetrahedron Lett., 1993, 34, 5785.
16 R . E. Portmann and C. G anter, H elv. Chim. A cta, 1973, 56, 1991.
17 T. M omose, N. Toyooka and Y. H irai, Chem. Lett., 1990, 1319.
18 Isolation: (a) R. J. Highet, J. Org. Chem., 1964, 29, 471; absolute configuration: (b) W. Y. Rice, Jr. and J. L. Coke, J. Org. Chem., 1966, 31, 1010; racemic synthesis: (c) H.-A. H asseberg and H. Gerlach, A nn. Chem., 1989, 255.

19 I. Christofidis, A. Welter and J. Jadot, Tetrahedron, 1977, 33, 977.

Paper 6/08490G
R eceived 18th D ecember 1996
A ccepted 8th M arch 1997
© Copyright 1997 by the Royal Society of Chemistry

